
JOURNAL OF COMPUTATIONAL PHYSICS 85, 284-301 (1989)

Particle Code Optimization on Vector Computers

A. HBRON AND J. C. ADAM

Centre de Physique Thtorique, Ecole Polytechnique,
LP du CNRS n” 14, 91128 P&beau Cedex, France

Received May 31, 1988; revised December 8, 1988

Big particle codes routinely employed for plasma physics simulation use large amounts of
computer time. Their optimization is therefore a must. In this paper we discuss proper
organization of the particle pusher in order to take full advantage of the vectorization facilities
offered by modern super computers. We show that this optimization is computer dependent
and introduce a new method of vectorization that we compare with the two previously
published ones. (2 1989 Academic Press, Inc

1. INTRODUCTION

Particle in cell codes are well-known tools for the study of kinetic phenomena in
plasma physics [1, 21. The object of this paper is the optimization, on vector com-
puters, of the particle pusher itself. For a given algorithm this obviously involves
vectorization of the code, but also an appropriate organization of the data to effec-
tively utilize the computer architecture. To emphasize this point, at each step of the
discussion we shall compare results obtained on two different computers: the
Cray-2 and the VP200 of Fujitsu. The purpose is not to compare computer perfor-
mances, but rather to show that the optimum can be very computer dependent.

Any particle code involves three steps:

(1) solving fields on a grid,
(2) advancing particles with the fields consistent with particle positions,
(3) depositing charge and current densities associated with each particle to

the grid.

We shall limit our discussion to steps (2) and (3). This is sufficient for optimiza-
tion of an explicit particle code, because the time spent in the field solver is usually
negligible compared to the time spent advancing particles and computing charge
and current densities. This may no longer be true in an implicit code [3, 41 for
which the solution of the field equations implies solving iteratively a complicated
linear system, but optimizing steps (2) and (3) would still necessary.

In this paper we introduce a new vectorization technique for step (3) that we
compare to two previously published ones [S, 61. The next section provides a brief
description of the architecture of the Cray-2 and VP200.

284
OO21-9991/89 $3.00
Copyright 0 1989 by Academic Press. Inc.
All rights of reproduction in any form reserved.

PARTICLE CODE OPTIMIZATION 285

2. ARCHITECTURES OF CRAY-2 AND VP200

The Cray-2 on which timings have been made has four processors and dynamic
MOS memory. The cycle time is 4. 1 ns and the size of the real memory available
is 256 Mwords or 2 Gigabytes. It also has 8 vector registers of 64 words and a very
fast local memory of 16 Kwords or 128 Kilobytes per processor. The add and mul-
tiply units can work in parallel but there is no chaining either between functional
units or between memory and functional units. The memory has 256 pseudo banks,
that are organized into four quadrants, connected to each CPU every four cycles.

Because of the importance of scatter/gather operations for a particle pusher we
have measured the average time of these operations using three different vectors of
indices. The length of the vector is lo6 elements.

First, as a reference, let us indicate that for sequential access to the data, the
average time necessary to execute the fortran instruction (the compiler used in the
following is CFT77 1.3)

X(I) = EX(I),

is 10 ns/element. This instruction involves a read and a write to memory.
Table I shows the average time to execute the gather instruction, X(I) =

EWW)), and the scatter instruction, EX(ID(I)) = X(I). Case number 1
corresponds to maximum memory conflict; case number 2 is a sequential access,
so that it provides a measure of he overhead introduced by the scatter/gather
operation (keep in mind that it involves at least the load from memory of the extra
quantity ID(I). Finally, in case 3, ID(I) is loaded using a uniform random number
generator so that it provides a good estimate of random access to memory as
needed in a particle pusher.

An important feature of the Cray-2 that appeared during these measurements is
that it behaves well even short vectors (typically for a length larger than 8), so that
the vector length is not a very important factor for optimization on this computer.

The VP200 is a single processor machine. The cycle time of the vector functional
units is 7 ns and the real memory available on the one that was used is
128 Megabytes which corresponds to 32 Mwords in single precision or 16 Mwords
in double precision. There are two data paths between the memory and functional
units and each of the functional units is a double pipe line. This means that each

TABLE I

CRAYZ Index Gather Scatter

1 ID(I) = const 273 ns 270 ns
2 ID(I) = I 29 ns 15ns
3 ID(I) = RANF() 46 ns 36 ns

286 HkRONANDADAM

TABLE II

Gather Scatter

VP200

1
2
3

Single Double Single Double
Index precision precision precision precision

ID(I) = const 103 ns 104 ns 340 ns 286 ns
ID(I) = I 54 ns 10 ns 172ns 9.7 ns
ID(I) = RANF() 13ns 15ns 25 ns 24 ns

of them is able to deliver two results per cycle. Contrary to the Cray-2 chaining is
possible between memory and functional units or between functional units them-
selves. These units can also operate in parallel. The vector register has a size of
64 Kbytes that can be dynamically configured as 256 registers of 32 elements of
8 bytes up to 8 registers of 1024 elements of 8 bytes. The memory is organized in
256 banks.

As before let us first indicate that for sequential access to the data the time to
execute the instruction X(1) = EX(1) is t = 4.9 ns/element in both single or double
precision.

Table II shows the same measures of performance as for the Cray-2 in the same
conditions. The degradation of the timings for single precision gather or scatter
operations is due to the memory organization. Contrary to the Cray-2, the VP200
is much more efficient on long vectors than on short ones. In all what follows single
precision which is accurate enough for a particle pusher, is used. The preceding
measurement done with a vector of lo6 elements are asymptotic transfer rates that
cannot be obtained with vector length much lower than lo3 elements. For this
computer, the vector length is an important factor of optimization.

3. OPTIMIZATION OF THE PARTICLE PUSHER

Solving the equations of motion for particles implies as a first step interpolating
the fields from the grid to the positions of the particles. Because these positions are
random, it involves an indirection corresponding to a gather operation. Once the
fields seen by the particle have been obtained the vectorization of the equations of
particle motion is trivial.

Because of the absence of adequate hardware, the vectorization of the gather
operation was not possible on the Cray-1. This means that in order to be able to
vectorize the equations of motion, the interpolation of the fields was done in a
seperate loop and the results stored in an auxiliary array.

This is no longer true on modern vector computers because gather and scatter
are allowed by the hardware and also because most modern compilers are able to

PARTICLE CODE OPTIMIZATION 287

recognize the corresponding structures. This means that the preceding decomposi-
tion of the particle loop is no longer necessary. On the contrary, an important
feature of most “super computers” is a relatively slow access to memory as com-
pared to the speed of the functional units. Optimization implies suppression of
unnecessary transfers to and from memory. Thus the creation of auxiliary arrays
must be avoided. Scalar temporary quantities are much more efficient because they
are extended to vector temporary quantities by the compiler and not saved in
memory.

As an example, for a 1D electrostatic code using appropriate normalization, the
advance of particles can be reduced to the following loop

DO 1 N = 1,NPART
I = INT(X(N))
XINT = X(N) - FLOAT(I)
VX(N) = VX(N) - EX(I) - XINT*(EX(I + 1) - EX(1))
X(N)=X(N)+VX(N)

1 CONTINUE

where NPART is the number of particles, X and VX are respectively the position
and velocity of the particle, EX is the electrostatic field defined on a grid.

We have shown in the preceding section, that on both computers considered
here, timing of the gather operations depends on the structure of the vector of
indirection. To illustrate this point we shall indicate now the timings obtained for
the previous loop for two kinds of initial loading of the particles. Both cases
correspond to a homogeneous system with one hundred particles per cell.

First, particles were loaded randomly, i.e., their initial positions were obtained
using a uniform random number generator providing numbers in the range
[O,NCEL], where NCEL is the total number of cells. This yielded the following
times per particle per time step:

Cray-2 131 ns,

VP200 33 ns .

Next, particles were loaded regularly, as for a “quiet start” with DX =
FLOAT(NCEL)/FLOAT(NPART). Due to memory access conflicts the timings
became

Cray-2 5OOns,

VP200 190 ns.

This shows the importance of the initial loading on the performance of a particle
code. This is especially true for the ions that move very slowly, but it is also valid
for electrons for which despite their small mass, a degradation of a factor of about
two can persist for a long time.

%l/SS/2-3

288 HhRON AND ADAM

4. VECTORIZATION OF THE CHARGE AND CURRENT DENSITY DEPOSITION

In the absence of scatter/gather hardware operators the optimum structure of a
2D electro magnetic particle code follows. It yield partial vectorization and is given
here as a reference before “full optimization.”

In this approach of vectorization the deposition loop is split into two loops. The
first computes all the weights and indices that are necessary. The next is a scalar
accumulation of the weights previously computed.

In the subsequent parts of the paper the variable NVECT designate the length of
auxiliary vectors used for the computation of the interpolation weights, as well as
the corresponding cell indices. If one had enough memory NVECT could be set
equal to NPART, but this is usually not the case even on a Cray-2. The size of
NVECT results from a trade-off between memory size constraint and speed up
obtained by increasing the vector length.

In order to minimize the number of arihmetical operations and especially to
avoid the presence of divisions which are very costly on any computer, in all that
follows, X is expressed in units of DX while Y is expressed in units of DY, yielding
a grid cell area equal to one.

C
C
C
C

C
C
C

C
C
C

C
C
C

SCALAR METHOD FOR ACCUMULATION OF CHARGE AND CURRENT DENSITIES

NDIMX:NUMBER OF CELLS IN X DIRECTION

DO 1 IN=l,NPART,NVECT
N=IN-1
DO 2 K=l,NVECT
N=N+l

INDICES FOR CHARGE DENSITY

I=INT(X(N))
XINT=X(N)-FLOAT(I)
J=INT(Y(N))
YINT=Y(N)-FLOAT(J)
ID(K)=I+J*NDIMX

WEIGHTS FOR CHARGE DENSITY

SRl(K)=(l.-XINT)*(l.-YINT)
SR4(K)=XINT*YINT
SR2(K)=XINT-SR4(K)
SRs(K)=YINT-SR4(K)

INDICES FOR CURRENT DENSITY

XAUX=X(N)-0.5*VX(N)
I=INT(XAUX)
XINT=XAUX-FLOAT(I)
YAUX=Y(N)-0.5*VY(N)

C
C
C

C

C

C

C
C
C

C

C

C

PARTICLE CODEOPTIMIZATION

J=INT(YAUX)
YINT=YAUX-FLOAT(J)
JD(K)=I+J*NDIMX

WEIGHTS FOR CURRENT DENSITY

Sl=(l.-XINT)*(l.-YINT)
S4=XINT*YINT
SZ=XINT-S4
S3=YINT-S4

SJXl(K)=Sl*VX(N)
SJXZ(K)=SZ*VX(N)
SJX3(K)=S3*VX(N)
SJX4(K)=S4*VX(N)

SJYl(K)=Sl*VY(N)
SJYZ(K)=SZ*VY(N)
SJY3(K)=S3*VY(N)
SJYI(K)=SI*VY(N)

2 CONTINUE

SCALAR ACCUMULATION OF CHARGE AND CURRENT DENSITIES

DO 3 K=l,NVECT

RHO(ID(K)) =RHO(ID(K))+SRl(K)
RHO(ID(K)+l) =RHO(ID(K)+l)+SRZ(K)
RHO(ID(K)+NDIMX) =RHO(ID(K)+NDIMX)+SR3(K)
RHO(ID(K)+NDIMX+l)=RHO(ID(K)+NDIMX+l)+SR4(K)

RJX(JD(K))=RJX(JD(K))+SJXl(K)
RJY(JD(K))=RJY(JD(K))+SJYl(K)
JDZ=JD(K)+l
RJX(JDZ)=RJX(JDZ)+SJXZ(K)
RJY(JDZ)=RJY(JDZ)+SJYZ(K)
JD3=JD(K)+NDIMX
RJX(JD3)=RJX(JD3)+SJX3(K)
RJY(JD3)=RJY(JD3)+SJY3(K)
JD4=JD3+1
RJX(JD4)=RJX(JD4)+SJX4(K)
RJY(JD4)=RJY(JD4)+SJY4(K)

3 CONTINUE
1 CONTINUE

289

Using this structure the following times per particle per time step were obtained:

Cray-2 3.25/q

VP200: 2.72~~.

290 HbRON AND ADAM

Contrary to the evolution of particles, because two particles belonging to the
same vector can contribute to the same location in memory, the availability of the
necessary hardware to vectorize scatter/gather operations is not sufficient to fully
vectorize charge and current deposition. Full vectorization implies suppression of
these dependencies. This suppression must not induce a large overhead nor may it
use too much memory. Two methods to remove the dependencies have been
proposed in the literature.

(a) Nishiguchi, Orii, and Yabe Method

In their method [5], particles of a vector contribue to different auxiliary arrays
where charge and current are accumulated. At the end of the accumulation step a
summation of these different arrays is made, in order to obtain the total charge and
current densities. As an example we have written below the new structure of the
structure of the deposition loop. NGROUP is the number of particles that are used
simultaneously in order to vectorize charge and current deposition. It determines
the vector length in this method.

z METHOD OF NISHIGUCHI ET AL
C

DO 1 IN=l,NPART,NGROUP
N=IN-1

CDIR$ IVDEP
*VOCL LOOP,NOVREC'

DO 2 K=l,NGROLJP
N=N+l

INDICES FOR CHARGE DENSITY

I=INT(X(N))
XINT=X(N)-FLOAT(I)
J=INT(Y(N))
YINT=Y(N)-FLOAT(J)
ID=I+J*NDIMX

WEIGHTS FOR CHARGE DENSITY

SRl=(l.-XINT)*(l.-YINT)
SR4=XINT*YINT
SR2=XINT-SR4
SR3=YINT-SR4

ACCUMULATION FOR CHARGE DENSITY

RAUX(ID,K) =RAUX(ID,K)+SRl
RAUX(ID+l,K) =RAUX(ID+l,K)+SR2
RAUX(ID+NDIMX,K) =RAUX(ID+NDIMX,K)+SR3
lUiUX(ID+NDIMX+1,K)=RAUX(ID+NDIMX+l,K)+SR4

C

C
C

1

PARTICLE CODE OPTIMIZATION

INDICES FOR CURRENT DENSITY

XAUX=X(N)-0.5*VX(N)
I=INT(XAUX)
XINT=XAUX-FLOAT(I)
YAUX=Y(N)-0.5*VY(N)
J=INT(YAUX)
YINT=YAUX-FLOAT(J)
JD=I+J*NDIMX

WEIGHTS AND ACCUMULATION FOR CURRENT DENSITY

Sl=(l.-XINT)*(l.-YINT)
SI=XINT*YINT
S2=XINT-S4
S3=YINT-S4

RAUJX(JD,K)=RAUJX(JD,K)+Sl*VX(N)
RAUJY(JD,K)=RAUJY(JD,K)+Sl*VY(N)
JD2=JD+l
RAUJX(JD2,K)=RAUJX(JD2,K)+S2*VX(N)
RAUJY(JD2,K)=RAUJY(JD2,K)+S2*VY(N)
JD3=JD+NDIMX
RAUJX(JD3,K)=RAUJX(JD3,K)+S3*VX(N)
RAUJY(JD3,K)=RAUJY(JD3,K)+S3*VY(N)
JD4=JD3+1
RAUJX(JD4,K)=RAUJX(JD4,K)+S4*VX(N)
RAUJY(JD4,K)=RAUJY(JD4,K)+S4*VY(N)

CONTINUE
CONTINUE

DO 3 K=l,NGROUP
DO 3 I=O,NCEL
RHO(I)=RHO(I)+RAUX(I,K)
RJX(I)=RJX(I)+RAUJX(I,K)
RJY(I)=RJY(I)+RAUJY(I,K)
CONTINUE

291

The CDIR$ IVDEP and *VOCL LOOP, NOREC are compiler directives for the
Cray-2 and VP200, respectively, specifying the absence of recurrence dependancies
in the loop.

One of the factors of speedup of this method is that the inclusion of the charge
accumulation into “loop 2” suppresses the necessity to store the vector of indices
and the corresponding weights, which in turn minimizes memory accesses.

Some overhead is induced by the supplementary additions that are needed at the
end of the accumulation step. In the following, F is the number of physical quan-
tities that must be accumulated. It is one for an electrostatic code and up to four,
for an electromagnetic code dealing with three components of the current density.

292 HitRON AND ADAM

TABLE III

Original method Modified method

VP200
CRAY2

1.22/s 1.48/s
1.63ps 1.80~s

Using the already introduced notations, the total number of extra additions is:

N= NGROUP x NCEL x F;

the size of the required auxiliary storage is:

M = NGROUP x NCEL x F.

Vectorization is efficient only if the vector length NGROUP is large enough. If
NGROUP has to be larger than 32, the storage requirement of the method can
become a problem in 2D and 3D. It can be reduced by using the same set of
auxiliary arrays successively for the F physical quantities. This involves recomput-
ing the interpolation weights and introducing an additional overhead of the order
of 20%. These two variations of the same algorithm correspond to the “original
method” and “modified method” in the tables.

The results shown in Table III were obtained for the same model as previously
(F = 3) and for NGROUP= 16. Table IV shows the influence of the length of
.NGROUP for the modified version of the algorithm. A larger value of NGROUP
implies extra additions that can only be compensated by a speed up of the vector
operation. The figures given for the VP200 clearly show that this is indeed true. On
the contrary, on the Cray-2 the optimum is reached for NGROUP z 16 which is a
relatively short vector.

In all the following we have chosen to refer to the timings obtained using this
modified method.

(b) Horowitz Method

The second method to remove dependancies is due to Horowitz [6]. It is based
on the idea that to obtain correct results, two particles of a given vector must not
contribue to the same cell. This requires sorting of the particles and the paper by
Horowitz is essentially a description of an optimal enumeration method for a
particle code.

TABLE IV

NGROUP 8 16 32 64

VP200 2.66 /is 1.48 ps 0.895 pts 0.74 ps
CRAY2 2.5 /LLS 1.8 ps 1.8 ps 2.6 pcs

PARTICLE CODE OPTIMIZATION 293

The sort involves splitting particles into groups, each group corresponding to a
vector for charge and current density deposition. An important point is that the
area weighting scheme used in standard particle codes does not guarantee that
because two particles are in different cells, their contributions to the neighbouring
cells are independent. This means that the different contributions of a given particle
must be accumulated in different arrays. The corresponding algorithm can be
written schematically in the following form (The reader is referred to Horowitz’s
paper for details of the sort).

Step 1. Execute Horowitz’s sort.

At the end of this step the following quantities have been obtained (in Horowitz’s
notation)

IGNMAX: is total number of groups of independent particles
IPOINT: is a pointer giving the address of the beginning of each group
IP: is an array of indices pointing at each particle of the group.

Step 2 is the deposition step by itself which becomes:

METHOD OF HOROWITZ - DEPOSITION STEP
C

C

C
C
C

C
C
C

C
C
C

DO 1 IGN=l,IGNMAX
CDIR$ IVDEP
*VOCL LOOP,NOVREC

DO 2 K=IPOINT(IGN),IPOINT(IGN+l)-1

N=IP(K)

INDICES FOR CHARGE DENSITY

I=INT(X(N))
XINT=X(N)-FLOAT(I)
J=INT(Y(N))
YINT=Y(N)-FLOAT(J)
ID=I+J*NDIMX

WEIGHTS FOR CHARGE DENSITY

SRl=(l.-XINT)*(l.-YINT)
SR4=XINT*YINT
SR2=XINT-SR4
SR3=YINT-SR4

ACCUMULATION FOR CHARGE DENSITY

RAUX(ID,l) =RAUX(ID,l)+SRl
RAUX(ID+1,2) =RAUX(ID+1,2)+SR2
RAUX(ID+NDIMX,3) =RAUX(ID+NDIMX,3)+SR3
RAUX(ID+NDIMX+1,4)=RAUX(ID+NDIMX+l,4)+SR4

294 HiRON AND ADAM

L

2 CONTINUE
1 CONTINUE

HOROWITZ'S SORT FOR CURRENT DENSITY
C

DO 11 IGN=l,IGNMAX
CDIR$ IVDEP
"VOCL LOOP,NOVREC

DO 12 K=IPOINT(IGN),IPOINT(IGN+l)-1

C

C
C

N=IP(K)

INDICES FOR CURRENT DENSITY

XAUX=X(N)-O.S*VX(N)
I=INT(XAUX)
XINT=XAUX-FLOAT(I)
YAUX=Y(N)-O.S*VY(N)
J=INT(YAUX)
YINT=YAUX-FLOAT(J)
JD=I+J*NDIMX

WEIGHTS AND ACCUMULATION FOR CURRENT DENSITY

Sl=(l.-XINT)*(l.-YINT)
S4=XINT*YINT
S2=XINT-S4
S3=YINT-S4

RAUJX(JD,l)=RAUJX(JD,l)+Sl*VX(N)
RAUJY(JD,l)=RAUJY(JD,l)+Sl*VY(N)
JD2=JD+l
RAUJX(JD2,2)=RAUJX(JD2,2)+S2*VX(N)
RAUJY(JD2,2)=RAUJY(JD2,2)+S2*VY(N)
JD3=JD+NDIMX
RAUJX(JD3,3)=RAUJX(JD3,3)+S3*VX(N)
RAUJY(JD3,3)=RAUJY(JD3,3)+S3*VY(N)
JD4=JD3+1
RAUJX(JD4,4)=RAUJX(JD4,4)+S4*VX(N)
RAUJY(JD4,4)=RAUJY(JD4,4)+S4*VY(N)

12 CONTINUE
11 CONTINUE

DO 3 I=O,NCEL
RHO(I)=RAUX(I,1)+RAUX(I,2)+RAUX(I,3)+RAUX(I,4)
RJX(I)=RAUJX(I,1)+RAUJX(I,2)+RAUJX(I,3)+RAUJX(I,4)
RJY(I)=RAUJY(I,1)+RAUJY(I,2)+RAUJY(I,3)+RAUJY(I,4)

3 CONTINUE

The main advantage of this method is that it can yield to vectors which can be
significantly larger than in the first method.

PARTICLE CODE OPTIMIZATION 295

TABLE V

VP200 Original method Modified method

Charge and Current deposition
Total time including sorting

0.72 /is 0.77 ps
2.86 /is 2.91 ps

In this case, the overhead induced by vectorization is essentially related to the
sorting of particles. The extra additions are much less important than in the
preceding method. Using the previous notation, the additional storage required is
approximatively given by

MAX(2*NPART + NCEL, NPART + 2D x Fx NCEL).

Here again, if the term 2D x F x NCEL is dominant in terms of storage, the extra
storage required can be reduced at very little cost by recomputing the weights
associated with each physical quantity. As previously, the two variations of this
algorithm correspond to the “original method’ and the “modified method.” Let us
emphasize that for an electromagnetic code, p and J, are usually not defined at the
same position and the same time. This implies that it is necessary to sort the
particles twice, which increases the overhead.

On both computers, the sort takes about 1 fls per particle. The corresponding
timings are shown Tables V and VI.

(c) A New Approach

Both preceding methods use extra storage to allow vectorization. This storage is
usually available for 2D simulations, but it becomes a problem in 3D. The aim of
the new approach that we have developed is to reduce the required auxiliary
storage and to generate a more efficient algorithm by also reducing the number of
auxiliary operations introduced by vectorization.

The basic idea is that, for a 2D particle code using linear weights of interpolation,
the four grid cells to which these weights are assigned are distinct. It is also true
that the memory location of each physical quantity is distinct. We combine all these
independent contributions into a single vector. This yields a vector of length 12
associated with the three physical quantities p, J,, J,. Specifically for the particle
K, ID(1, K) (I= 1,4) contain the addresses of the four cell numbers corresponding
to the charge density p and SD(1, K) (I= 1,4) the corresponding weights. Similarly,

TABLE VI

CRAYZ Original method Modified method

Charge and current deposition
Total time including sorting

0.99 ps 1.19 ps
3.05 /Is 3.25 ps

296 HkRON AND ADAM

ID(Z, K) and SD(Z, K) (I= 5, 8) contain the addresses and weights corresponding
to .Z, while ID(Z, K) and SD(Z, K) (I= 9, 12) contain the same quantities for J,. The
general length is 2D x F. It is fair to note that this idea has been presented
simultaneously by J. L. Schwarzmeier et al. and us at the 12th Conference on the
Numerical Simulation of Plasma in 1987.

At this stage we have generated a short vector and it can be shown that the extra
work induced by vectorization is:

NPART auxiliary additions for an electrostatic code used to build the
vector of indices, (2D x (F- 2) + 2) x NPART auxiliary additions for an
electromagnetic code.

In order to improve the efficiency of vectorization the vector length must be
increased. This is done by combining our approach with the first method. This
means that we handle NGROUP particles simultaneously. This yields a vector
length equal to NGROUP x 2D x F. The advantage is that as we start with a vector
length larger than one, the number of auxiliary arrays needed is reduced by a factor
2O and the number of extra additions is reduced by 2D x F. As before, we shall now
illustrate the practical implementation of the method by writing down the corre-
sponding FORTRAN loop. Note however that the arrays involved must be declared
in a single “COMMON” statement in order to guarantee the proper memory
organization. As NGROUP is a small number of particles, we preserve the
efficiency of the computation of the interpolation weights by using auxiliary arrays
of length NVECT as in the reference code:

C
C DEFINITION OF CONSTANTS ,NGR AND NGJ
C NGR,NGJ,POINTERS TO BEGINNING OF PARTICLE GROUP
C

NCF3=NCEL*3
NVF12=NVECT*12
NPF12=NGROUP*12

L

DO 10 IK=l,NVECT,NGROUP
K=IK-1
DO 11 IGROUP=l,NGROUP
K=K+l
NGR(K)=l+(IGROUP-l)*NCF3
NGJ(K)=NGR(K)+NCEL

11 CONTINUE
10 CONTINUE

C
C NEW METHOD FOR ACCUMULATION OF CHARGE AND CURRENT DENSITIES
C

COMM0N/ARRAY/RHO(0:NDIM),RJX(O:NDIM),RJY(O:NDIM),
TABAUX(NCF3,NGROUP-1)

'DIMENSION ID(12,NVECT),SD(12,NVECT),IDlD(NVFl2),SDlD(NVF
EQUIVALENCE (ID(1,1),ID1D(l)),(SD(l,l),SDlD(l))
DIMENSION TAB(NCF3,NGROUP),TABlD(NCF3*NGROUP)
EQUIVALENCE (TAB(~,~),RH~(~)),(TAB(~,~),TAB~D(~))

PARTICLE CODE OPTIMIZATION

C

297

C
C
C

C
C
C

C
C
C

C
C
C

C

DO 1 IN=l,NPART,NVECT
N=IN-1
DO 2 K=l,NVECT
N=N+l

INDICES FOR CHARGE DENSITY

I=INT(X(N))
XINT=X(N)-FLOAT(I)
J=INT(Y(N))
YINT=Y(N)-FLOAT(J)
ID(l,K)=I+J*NDIMX+NGR(K)
ID(2,K)=ID(l,K)+l
ID(3,K)=ID(l,K)+NDIMX
ID(4,K)=ID(3,K)+l

WEIGHTS FOR CHARGE DENSITY

SD(l,K)=(l.-XINT)*(l.-YINT)
SD(4,K)=XINT*YINT
SD(2,K)=XINT-SD(4,K)
SD(3,K)=YINT-SD(4,K)

INDICES FOR CURRENT DENSITY

XAUX=X(N)-0.5*VX(N)
I=INT(XAUX)
XINT=XAUX-FLOAT(I)
YAUX=Y(N)-0.5*VY(N)
J=INT(YAUX)
YINT=YAUX-FLOAT(J)
ID(5,K)=I+J*NDIMX+NGJ(K)
ID(6,K)=ID(5,K)+l
ID(7,K)=ID(5,K)+NDIMX
ID(E,K)=ID(7,K)+l
ID(g,K)=ID(S,K)+NCEL
ID(lO,K)=ID(6,K)+NCEL
ID(ll,K)=ID(7,K)+NCEL
ID(12,K)=ID(S,K)+NCEL

WEIGHTS FOR CURRENT DENSITY

Sl=(l.-XINT)*(l.-YINT)
SI=XINT*YINT
SZ=XINT-S4
S3=YINT-S4

SD(5,K)=Sl*VX(N)
SD(6,K)=SZ*VX(N)
SD(7,K)=S3*VX(N)
SD(8,K)=S4*VX(N)
SD(g,K)=Sl*VY(N)
SD(lO,K)=S2*VY(N)

298 HbRON AND ADAM

SD(ll,K)=S3*VY(N)
SD(l2,K)=S4*VY(N)

C
2 CONTINUE

C
C ACCUMULATION OF CHARGE AND CURRENT DENSITIES
C

DO 3 K=l,NVF12,NPF12
C

CDIR$ IVDEP
"VOCL LOOP,NOVREC

DO 4 IK=K,K+NPF12-1
TABlD(ID1D(IK))=TABlD(IDlD(IK))+SDlD(IK)

4 CONTINUE
3 CONTINUE

L.

1 CONTINUE
C

DO 5 IGROUP=2,NGROUP
DO 5 I=l,NCEL
TAB(I,l)=TAB(I,l)+TAB(I,IGROUP)

5 CONTINUE

The optimum organization of the vector of indices is computer dependent. On
the Cray-2, it has been indicated in Section 2 that the memory was organized into
four quadrants to which each CPU has access every four cycles. This means that
the indices associated with the four weights of each physical quantities must point
to different quadrant of the memory. According to the definition of ID(3, K) as a
function of ID(1, K) this implies NDIMX = 4N+ 2. A further constraint of
optimization is that the total dimension of the arrays involve is such that
NCEL = 4N. This ensures that the indices of the different components of the
current density are in consecutive quadrants. If a particle has not changed cell in
half a time step the indices of the charge density are also in consecutive quadrants.

Because of the difference in memory structure, the previous organization is not
optimum on the VP200 in single precision. The detailed timings of scatter/gather
operations that we have provided at the beginning of this paper have shown that
referencing two consecutive elements of memory in single precision yields bank
conflicts that are catastrophic in terms of performance. A much better organization
on the VP200 is: ID(l, K), ID(3, K), ID(5, K), ID(7, K), ID(9, K), ID(ll, K),
ID(2, K), ID(4, K), . . .

Because of the bank organization of the VP200 this scheme is optimal only if
NDIMX = 4N + 2 and NCEL = 4N.

It is left to the reader to discover better combinations. Timings of Table VII
illustrate the previous consideration. In each case we have combined particles in
group of 5 (NGROUP = 5).

The influence of bank conflicts is clearly visible on the VP200. On the Cray-2, the
use of the VP200 organization of the vector of indices only yields quadrant conflicts

PARTICLE CODE OPTIMIZATION

TABLE VII

299

VP200
CRAYZ

Cray organization VP organization

2.18 /IS 1.22 /ls
1.35 /Is 1.5 /ls

every two indices and no bank conflicts, which explains why the decrease in perfor-
mance is not very high.

5. COMPARISON OF THE THREE METHODS

In the preceding sections we have shown the influence of the different free
parameters (number of particles in a group, memory organization) on the overall
performance of each of the methods. In this section we shall compare their relative
performances under the constraint that the auxiliary storage, used by each of them,
is approximatively the same. Assuming 10 particles per cell, this yields
NGROUP = 16 for the first method and NGROUP = 5 for the third method, when
collecting p, J,, J, or NGROUP = 16 when collecting only p. The corresponding
timings are shown in Table VIII. The number given in parentheses beside each
timing is the vector length. This number is not indicated in the Horowitz method
because it depends on the output of the sort and, as it is usually large, it is
much less critical. The results referred to as “scalar deposition” correspond to
the reference code, i.e., to the structure of the program before “full vectorization”
of the particle pusher. Since the basis of the new method corresponds to the case
NGROUP = 1, we have also included the corresponding timings under the
reference NO X-STOR (no extra storage).

Finally in Table IX we present timings obtained for the 3D case. We have
assumed that the memory constraint was more severe than in 2D. In particular to
limit extra storage we have assumed that in the Horowitz method particles are

TABLE VIII

CRAYZ VP200

P AJ,,J, P P,J,,J,

Scalar deposition 1.22 ps 3.03 jls 1 PS 2.12 j&s
Horowitz 1.41 /Is 3.45 ps 1.35 ps 2.91 p

Nishiguchi et al. 0.55 ps (16) 1.80 /LS (16) 0.42 /IS (16) 1.48 /is (16)
Heron, Adam 0.52 /is (64) 1.35 p (60) 0.55 /LS (64) 1.22 ps (60)
Heron, Adam 1.35 ps (4) 1.90 /Is (12) 2.14 /LS (4) 2.3 /IS (12)

(NO X-STOR)

300 HkRON AND ADAM

TABLE IX

CRAYZ VP200

P P, J,, J,., J, P P, Jx, Jy, Jz

Scalar deposition 3.4 p 9.4 ps 1.56 /IS 6.48 /is
Horowitz 2 P 5.95 p 1.36 ps 3.51 ps

Nishiguchi et al. 1.4/S 5.7 ps 1.75 /Is 7.12 ps
Heron, Adam 1 P (64) 2.6 ps (64) 0.89 ps (64) 2.12 p (64)
Heron, Adam 1.6 PLS (8) 3.1 /JS (32) 2.2 ps (8) 2.65 ps (32)

(NO X-STOR)

sorted by blocks. For all the methods we have limited the auxiliary memory
requirement to eight times NCEL (note that for NCEL = 1283 this is already in the
range of 16 Mwords). This implies NGROUP= 8 for Nishiguchi’s method,
NGROUP = 8 for the electrostatic case and NGROUP = 2 for the electromagnetic
case in our method.

The comparison of the three preceding methods of vectorization yields the
following conclusions: For the Cray 2,

(a) The new method that we have introduced is always more efficient.
(b) The results obtained without extra storage show that, if the vector length

is smaller than eight (2D electrostatic code), the vectorization is inefftcient and
should not be implemented. This case which corresponds to a severe memory
constraint seems rather unlikely on the Cray-2.

(c) In 3D where memory constraint is likely to occur, good performance can
be obtained without auxiliary storage and without any programming pain.

For the VP200,

(a) Without memory constraint the method by Nishiguchi et af. always the
fastest (NGROUP x 64).

(b) If one is more realistic in terms of memory constraint, then, our method
is always better except for the 2D electrostatic case.

(c) The timings without extra storage also show that vectorization should be
avoided if the vector length is smaller than 12.

Finally we feel that the two computers that we have compared provide some more
general insight on the behavior of the algorithms for a larger class of computers. If
the archictecture of a given computer is such that it handles efficiently short vectors,
the conclusions for the Cray-2 hold, otherwise the conclusion for the VP200 are
probably correct.

It is also worthwhile to note that, on vector computers, the deposition step
of a particle pusher is an expensive step. Depending on the model (electrostatic

PARTICLE CODE OPTIMIZATION 301

or electromagnetic) and the number of dimensions, we have found that after
optimization this step costs typically between 50 and 65% of the total particle
pusher time.

The computers used were the VP200 of CIRCE and the Cray-2 of CCVR.

REFERENCES

1. R. W. HOCKNEY AND J. W. EASTWOOD, Computer Simulation Using Particles (McGraw-Hill,
New York, 1981).

2. C. K. BIRDSALL AND A. B. LANGDON, Plasma Physics via Computer Simulation (McGraw-Hill,
New York, 1985).

3. J. U. BRACKBILL AND D. W. FORSLUND, J. Comput. Phys. 46, 271 (1982).
4. A. B. LANGDON, B. I. COHEN, AND A. FRIEDMAN, J. Comput. Phys. 51, 107 (1983); D. W. HEWETT

AND A. B. LANGDON, J. Comput. Phys. 12, 121 (1987).
5. A. NISHIGUCHI, S. ORII, AND T. YABE, J. Comput. Phys. 61, 519 (1985).

6. E. J. HOROWITZ, J. Comput. Phys. 68, 56 (1987).

