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Big particle codes routinely employed for plasma physics simulation use large amounts of 
computer time. Their optimization is therefore a must. In this paper we discuss proper 
organization of the particle pusher in order to take full advantage of the vectorization facilities 
offered by modern super computers. We show that this optimization is computer dependent 
and introduce a new method of vectorization that we compare with the two previously 
published ones. (2 1989 Academic Press, Inc 

1. INTRODUCTION 

Particle in cell codes are well-known tools for the study of kinetic phenomena in 
plasma physics [1, 21. The object of this paper is the optimization, on vector com- 
puters, of the particle pusher itself. For a given algorithm this obviously involves 
vectorization of the code, but also an appropriate organization of the data to effec- 
tively utilize the computer architecture. To emphasize this point, at each step of the 
discussion we shall compare results obtained on two different computers: the 
Cray-2 and the VP200 of Fujitsu. The purpose is not to compare computer perfor- 
mances, but rather to show that the optimum can be very computer dependent. 

Any particle code involves three steps: 

(1) solving fields on a grid, 
(2) advancing particles with the fields consistent with particle positions, 
(3) depositing charge and current densities associated with each particle to 

the grid. 

We shall limit our discussion to steps (2) and (3). This is sufficient for optimiza- 
tion of an explicit particle code, because the time spent in the field solver is usually 
negligible compared to the time spent advancing particles and computing charge 
and current densities. This may no longer be true in an implicit code [3, 41 for 
which the solution of the field equations implies solving iteratively a complicated 
linear system, but optimizing steps (2) and (3) would still necessary. 

In this paper we introduce a new vectorization technique for step (3) that we 
compare to two previously published ones [S, 61. The next section provides a brief 
description of the architecture of the Cray-2 and VP200. 
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2. ARCHITECTURES OF CRAY-2 AND VP200 

The Cray-2 on which timings have been made has four processors and dynamic 
MOS memory. The cycle time is 4. 1 ns and the size of the real memory available 
is 256 Mwords or 2 Gigabytes. It also has 8 vector registers of 64 words and a very 
fast local memory of 16 Kwords or 128 Kilobytes per processor. The add and mul- 
tiply units can work in parallel but there is no chaining either between functional 
units or between memory and functional units. The memory has 256 pseudo banks, 
that are organized into four quadrants, connected to each CPU every four cycles. 

Because of the importance of scatter/gather operations for a particle pusher we 
have measured the average time of these operations using three different vectors of 
indices. The length of the vector is lo6 elements. 

First, as a reference, let us indicate that for sequential access to the data, the 
average time necessary to execute the fortran instruction (the compiler used in the 
following is CFT77 1.3) 

X(I) = EX(I), 

is 10 ns/element. This instruction involves a read and a write to memory. 
Table I shows the average time to execute the gather instruction, X(I) = 

EWW)), and the scatter instruction, EX(ID(I)) = X(I). Case number 1 
corresponds to maximum memory conflict; case number 2 is a sequential access, 
so that it provides a measure of he overhead introduced by the scatter/gather 
operation (keep in mind that it involves at least the load from memory of the extra 
quantity ID(I). Finally, in case 3, ID(I) is loaded using a uniform random number 
generator so that it provides a good estimate of random access to memory as 
needed in a particle pusher. 

An important feature of the Cray-2 that appeared during these measurements is 
that it behaves well even short vectors (typically for a length larger than 8), so that 
the vector length is not a very important factor for optimization on this computer. 

The VP200 is a single processor machine. The cycle time of the vector functional 
units is 7 ns and the real memory available on the one that was used is 
128 Megabytes which corresponds to 32 Mwords in single precision or 16 Mwords 
in double precision. There are two data paths between the memory and functional 
units and each of the functional units is a double pipe line. This means that each 

TABLE I 

CRAYZ Index Gather Scatter 

1 ID(I) = const 273 ns 270 ns 
2 ID(I) = I 29 ns 15ns 
3 ID(I) = RANF( ) 46 ns 36 ns 
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TABLE II 

Gather Scatter 

VP200 

1 
2 
3 

Single Double Single Double 
Index precision precision precision precision 

ID(I) = const 103 ns 104 ns 340 ns 286 ns 
ID(I) = I 54 ns 10 ns 172ns 9.7 ns 
ID(I) = RANF( ) 13ns 15ns 25 ns 24 ns 

of them is able to deliver two results per cycle. Contrary to the Cray-2 chaining is 
possible between memory and functional units or between functional units them- 
selves. These units can also operate in parallel. The vector register has a size of 
64 Kbytes that can be dynamically configured as 256 registers of 32 elements of 
8 bytes up to 8 registers of 1024 elements of 8 bytes. The memory is organized in 
256 banks. 

As before let us first indicate that for sequential access to the data the time to 
execute the instruction X(1) = EX(1) is t = 4.9 ns/element in both single or double 
precision. 

Table II shows the same measures of performance as for the Cray-2 in the same 
conditions. The degradation of the timings for single precision gather or scatter 
operations is due to the memory organization. Contrary to the Cray-2, the VP200 
is much more efficient on long vectors than on short ones. In all what follows single 
precision which is accurate enough for a particle pusher, is used. The preceding 
measurement done with a vector of lo6 elements are asymptotic transfer rates that 
cannot be obtained with vector length much lower than lo3 elements. For this 
computer, the vector length is an important factor of optimization. 

3. OPTIMIZATION OF THE PARTICLE PUSHER 

Solving the equations of motion for particles implies as a first step interpolating 
the fields from the grid to the positions of the particles. Because these positions are 
random, it involves an indirection corresponding to a gather operation. Once the 
fields seen by the particle have been obtained the vectorization of the equations of 
particle motion is trivial. 

Because of the absence of adequate hardware, the vectorization of the gather 
operation was not possible on the Cray-1. This means that in order to be able to 
vectorize the equations of motion, the interpolation of the fields was done in a 
seperate loop and the results stored in an auxiliary array. 

This is no longer true on modern vector computers because gather and scatter 
are allowed by the hardware and also because most modern compilers are able to 
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recognize the corresponding structures. This means that the preceding decomposi- 
tion of the particle loop is no longer necessary. On the contrary, an important 
feature of most “super computers” is a relatively slow access to memory as com- 
pared to the speed of the functional units. Optimization implies suppression of 
unnecessary transfers to and from memory. Thus the creation of auxiliary arrays 
must be avoided. Scalar temporary quantities are much more efficient because they 
are extended to vector temporary quantities by the compiler and not saved in 
memory. 

As an example, for a 1D electrostatic code using appropriate normalization, the 
advance of particles can be reduced to the following loop 

DO 1 N = 1,NPART 
I = INT(X(N)) 
XINT = X(N) - FLOAT(I) 
VX(N) = VX(N) - EX(I) - XINT*(EX(I + 1) - EX(1)) 
X(N)=X(N)+VX(N) 

1 CONTINUE 

where NPART is the number of particles, X and VX are respectively the position 
and velocity of the particle, EX is the electrostatic field defined on a grid. 

We have shown in the preceding section, that on both computers considered 
here, timing of the gather operations depends on the structure of the vector of 
indirection. To illustrate this point we shall indicate now the timings obtained for 
the previous loop for two kinds of initial loading of the particles. Both cases 
correspond to a homogeneous system with one hundred particles per cell. 

First, particles were loaded randomly, i.e., their initial positions were obtained 
using a uniform random number generator providing numbers in the range 
[O,NCEL], where NCEL is the total number of cells. This yielded the following 
times per particle per time step: 

Cray-2 131 ns, 

VP200 33 ns . 

Next, particles were loaded regularly, as for a “quiet start” with DX = 
FLOAT(NCEL)/FLOAT(NPART). Due to memory access conflicts the timings 
became 

Cray-2 5OOns, 

VP200 190 ns. 

This shows the importance of the initial loading on the performance of a particle 
code. This is especially true for the ions that move very slowly, but it is also valid 
for electrons for which despite their small mass, a degradation of a factor of about 
two can persist for a long time. 

%l/SS/2-3 



288 HhRON AND ADAM 

4. VECTORIZATION OF THE CHARGE AND CURRENT DENSITY DEPOSITION 

In the absence of scatter/gather hardware operators the optimum structure of a 
2D electro magnetic particle code follows. It yield partial vectorization and is given 
here as a reference before “full optimization.” 

In this approach of vectorization the deposition loop is split into two loops. The 
first computes all the weights and indices that are necessary. The next is a scalar 
accumulation of the weights previously computed. 

In the subsequent parts of the paper the variable NVECT designate the length of 
auxiliary vectors used for the computation of the interpolation weights, as well as 
the corresponding cell indices. If one had enough memory NVECT could be set 
equal to NPART, but this is usually not the case even on a Cray-2. The size of 
NVECT results from a trade-off between memory size constraint and speed up 
obtained by increasing the vector length. 

In order to minimize the number of arihmetical operations and especially to 
avoid the presence of divisions which are very costly on any computer, in all that 
follows, X is expressed in units of DX while Y is expressed in units of DY, yielding 
a grid cell area equal to one. 

C 
C 
C 
C 

C 
C 
C 

C 
C 
C 

C 
C 
C 

SCALAR METHOD FOR ACCUMULATION OF CHARGE AND CURRENT DENSITIES 

NDIMX:NUMBER OF CELLS IN X DIRECTION 

DO 1 IN=l,NPART,NVECT 
N=IN-1 
DO 2 K=l,NVECT 
N=N+l 

INDICES FOR CHARGE DENSITY 

I=INT(X(N)) 
XINT=X(N)-FLOAT(I) 
J=INT(Y(N)) 
YINT=Y(N)-FLOAT(J) 
ID(K)=I+J*NDIMX 

WEIGHTS FOR CHARGE DENSITY 

SRl(K)=(l.-XINT)*(l.-YINT) 
SR4(K)=XINT*YINT 
SR2(K)=XINT-SR4(K) 
SRs(K)=YINT-SR4(K) 

INDICES FOR CURRENT DENSITY 

XAUX=X(N)-0.5*VX(N) 
I=INT(XAUX) 
XINT=XAUX-FLOAT(I) 
YAUX=Y(N)-0.5*VY(N) 
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J=INT(YAUX) 
YINT=YAUX-FLOAT(J) 
JD(K)=I+J*NDIMX 

WEIGHTS FOR CURRENT DENSITY 

Sl=(l.-XINT)*(l.-YINT) 
S4=XINT*YINT 
SZ=XINT-S4 
S3=YINT-S4 

SJXl(K)=Sl*VX(N) 
SJXZ(K)=SZ*VX(N) 
SJX3(K)=S3*VX(N) 
SJX4(K)=S4*VX(N) 

SJYl(K)=Sl*VY(N) 
SJYZ(K)=SZ*VY(N) 
SJY3(K)=S3*VY(N) 
SJYI(K)=SI*VY(N) 

2 CONTINUE 

SCALAR ACCUMULATION OF CHARGE AND CURRENT DENSITIES 

DO 3 K=l,NVECT 

RHO(ID(K)) =RHO(ID(K))+SRl(K) 
RHO(ID(K)+l) =RHO(ID(K)+l)+SRZ(K) 
RHO(ID(K)+NDIMX) =RHO(ID(K)+NDIMX)+SR3(K) 
RHO(ID(K)+NDIMX+l)=RHO(ID(K)+NDIMX+l)+SR4(K) 

RJX(JD(K))=RJX(JD(K))+SJXl(K) 
RJY(JD(K))=RJY(JD(K))+SJYl(K) 
JDZ=JD(K)+l 
RJX(JDZ)=RJX(JDZ)+SJXZ(K) 
RJY(JDZ)=RJY(JDZ)+SJYZ(K) 
JD3=JD(K)+NDIMX 
RJX(JD3)=RJX(JD3)+SJX3(K) 
RJY(JD3)=RJY(JD3)+SJY3(K) 
JD4=JD3+1 
RJX(JD4)=RJX(JD4)+SJX4(K) 
RJY(JD4)=RJY(JD4)+SJY4(K) 

3 CONTINUE 
1 CONTINUE 

289 

Using this structure the following times per particle per time step were obtained: 

Cray-2 3.25/q 

VP200: 2.72~~. 
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Contrary to the evolution of particles, because two particles belonging to the 
same vector can contribute to the same location in memory, the availability of the 
necessary hardware to vectorize scatter/gather operations is not sufficient to fully 
vectorize charge and current deposition. Full vectorization implies suppression of 
these dependencies. This suppression must not induce a large overhead nor may it 
use too much memory. Two methods to remove the dependencies have been 
proposed in the literature. 

(a) Nishiguchi, Orii, and Yabe Method 

In their method [5], particles of a vector contribue to different auxiliary arrays 
where charge and current are accumulated. At the end of the accumulation step a 
summation of these different arrays is made, in order to obtain the total charge and 
current densities. As an example we have written below the new structure of the 
structure of the deposition loop. NGROUP is the number of particles that are used 
simultaneously in order to vectorize charge and current deposition. It determines 
the vector length in this method. 

z METHOD OF NISHIGUCHI ET AL 
C 

DO 1 IN=l,NPART,NGROUP 
N=IN-1 

CDIR$ IVDEP 
*VOCL LOOP,NOVREC' 

DO 2 K=l,NGROLJP 
N=N+l 

INDICES FOR CHARGE DENSITY 

I=INT(X(N)) 
XINT=X(N)-FLOAT(I) 
J=INT(Y(N)) 
YINT=Y(N)-FLOAT(J) 
ID=I+J*NDIMX 

WEIGHTS FOR CHARGE DENSITY 

SRl=(l.-XINT)*(l.-YINT) 
SR4=XINT*YINT 
SR2=XINT-SR4 
SR3=YINT-SR4 

ACCUMULATION FOR CHARGE DENSITY 

RAUX(ID,K) =RAUX(ID,K)+SRl 
RAUX(ID+l,K) =RAUX(ID+l,K)+SR2 
RAUX(ID+NDIMX,K) =RAUX(ID+NDIMX,K)+SR3 
lUiUX(ID+NDIMX+1,K)=RAUX(ID+NDIMX+l,K)+SR4 
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INDICES FOR CURRENT DENSITY 

XAUX=X(N)-0.5*VX(N) 
I=INT(XAUX) 
XINT=XAUX-FLOAT(I) 
YAUX=Y(N)-0.5*VY(N) 
J=INT(YAUX) 
YINT=YAUX-FLOAT(J) 
JD=I+J*NDIMX 

WEIGHTS AND ACCUMULATION FOR CURRENT DENSITY 

Sl=(l.-XINT)*(l.-YINT) 
SI=XINT*YINT 
S2=XINT-S4 
S3=YINT-S4 

RAUJX(JD,K)=RAUJX(JD,K)+Sl*VX(N) 
RAUJY(JD,K)=RAUJY(JD,K)+Sl*VY(N) 
JD2=JD+l 
RAUJX(JD2,K)=RAUJX(JD2,K)+S2*VX(N) 
RAUJY(JD2,K)=RAUJY(JD2,K)+S2*VY(N) 
JD3=JD+NDIMX 
RAUJX(JD3,K)=RAUJX(JD3,K)+S3*VX(N) 
RAUJY(JD3,K)=RAUJY(JD3,K)+S3*VY(N) 
JD4=JD3+1 
RAUJX(JD4,K)=RAUJX(JD4,K)+S4*VX(N) 
RAUJY(JD4,K)=RAUJY(JD4,K)+S4*VY(N) 

CONTINUE 
CONTINUE 

DO 3 K=l,NGROUP 
DO 3 I=O,NCEL 
RHO(I)=RHO(I)+RAUX(I,K) 
RJX(I)=RJX(I)+RAUJX(I,K) 
RJY(I)=RJY(I)+RAUJY(I,K) 
CONTINUE 
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The CDIR$ IVDEP and *VOCL LOOP, NOREC are compiler directives for the 
Cray-2 and VP200, respectively, specifying the absence of recurrence dependancies 
in the loop. 

One of the factors of speedup of this method is that the inclusion of the charge 
accumulation into “loop 2” suppresses the necessity to store the vector of indices 
and the corresponding weights, which in turn minimizes memory accesses. 

Some overhead is induced by the supplementary additions that are needed at the 
end of the accumulation step. In the following, F is the number of physical quan- 
tities that must be accumulated. It is one for an electrostatic code and up to four, 
for an electromagnetic code dealing with three components of the current density. 
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TABLE III 

Original method Modified method 

VP200 
CRAY2 

1.22/s 1.48/s 
1.63ps 1.80~s 

Using the already introduced notations, the total number of extra additions is: 

N= NGROUP x NCEL x F; 

the size of the required auxiliary storage is: 

M = NGROUP x NCEL x F. 

Vectorization is efficient only if the vector length NGROUP is large enough. If 
NGROUP has to be larger than 32, the storage requirement of the method can 
become a problem in 2D and 3D. It can be reduced by using the same set of 
auxiliary arrays successively for the F physical quantities. This involves recomput- 
ing the interpolation weights and introducing an additional overhead of the order 
of 20%. These two variations of the same algorithm correspond to the “original 
method” and “modified method” in the tables. 

The results shown in Table III were obtained for the same model as previously 
(F = 3) and for NGROUP= 16. Table IV shows the influence of the length of 
.NGROUP for the modified version of the algorithm. A larger value of NGROUP 
implies extra additions that can only be compensated by a speed up of the vector 
operation. The figures given for the VP200 clearly show that this is indeed true. On 
the contrary, on the Cray-2 the optimum is reached for NGROUP z 16 which is a 
relatively short vector. 

In all the following we have chosen to refer to the timings obtained using this 
modified method. 

(b) Horowitz Method 

The second method to remove dependancies is due to Horowitz [6]. It is based 
on the idea that to obtain correct results, two particles of a given vector must not 
contribue to the same cell. This requires sorting of the particles and the paper by 
Horowitz is essentially a description of an optimal enumeration method for a 
particle code. 

TABLE IV 

NGROUP 8 16 32 64 

VP200 2.66 /is 1.48 ps 0.895 pts 0.74 ps 
CRAY2 2.5 /LLS 1.8 ps 1.8 ps 2.6 pcs 
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The sort involves splitting particles into groups, each group corresponding to a 
vector for charge and current density deposition. An important point is that the 
area weighting scheme used in standard particle codes does not guarantee that 
because two particles are in different cells, their contributions to the neighbouring 
cells are independent. This means that the different contributions of a given particle 
must be accumulated in different arrays. The corresponding algorithm can be 
written schematically in the following form (The reader is referred to Horowitz’s 
paper for details of the sort). 

Step 1. Execute Horowitz’s sort. 

At the end of this step the following quantities have been obtained (in Horowitz’s 
notation) 

IGNMAX: is total number of groups of independent particles 
IPOINT: is a pointer giving the address of the beginning of each group 
IP: is an array of indices pointing at each particle of the group. 

Step 2 is the deposition step by itself which becomes: 

METHOD OF HOROWITZ - DEPOSITION STEP 
C 

C 

C 
C 
C 

C 
C 
C 

C 
C 
C 

DO 1 IGN=l,IGNMAX 
CDIR$ IVDEP 
*VOCL LOOP,NOVREC 

DO 2 K=IPOINT(IGN),IPOINT(IGN+l)-1 

N=IP(K) 

INDICES FOR CHARGE DENSITY 

I=INT(X(N)) 
XINT=X(N)-FLOAT(I) 
J=INT(Y(N)) 
YINT=Y(N)-FLOAT(J) 
ID=I+J*NDIMX 

WEIGHTS FOR CHARGE DENSITY 

SRl=(l.-XINT)*(l.-YINT) 
SR4=XINT*YINT 
SR2=XINT-SR4 
SR3=YINT-SR4 

ACCUMULATION FOR CHARGE DENSITY 

RAUX(ID,l) =RAUX(ID,l)+SRl 
RAUX(ID+1,2) =RAUX(ID+1,2)+SR2 
RAUX(ID+NDIMX,3) =RAUX(ID+NDIMX,3)+SR3 
RAUX(ID+NDIMX+1,4)=RAUX(ID+NDIMX+l,4)+SR4 
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L 

2 CONTINUE 
1 CONTINUE 

HOROWITZ'S SORT FOR CURRENT DENSITY 
C 

DO 11 IGN=l,IGNMAX 
CDIR$ IVDEP 
"VOCL LOOP,NOVREC 

DO 12 K=IPOINT(IGN),IPOINT(IGN+l)-1 

C 

C 
C 

N=IP(K) 

INDICES FOR CURRENT DENSITY 

XAUX=X(N)-O.S*VX(N) 
I=INT(XAUX) 
XINT=XAUX-FLOAT(I) 
YAUX=Y(N)-O.S*VY(N) 
J=INT(YAUX) 
YINT=YAUX-FLOAT(J) 
JD=I+J*NDIMX 

WEIGHTS AND ACCUMULATION FOR CURRENT DENSITY 

Sl=(l.-XINT)*(l.-YINT) 
S4=XINT*YINT 
S2=XINT-S4 
S3=YINT-S4 

RAUJX(JD,l)=RAUJX(JD,l)+Sl*VX(N) 
RAUJY(JD,l)=RAUJY(JD,l)+Sl*VY(N) 
JD2=JD+l 
RAUJX(JD2,2)=RAUJX(JD2,2)+S2*VX(N) 
RAUJY(JD2,2)=RAUJY(JD2,2)+S2*VY(N) 
JD3=JD+NDIMX 
RAUJX(JD3,3)=RAUJX(JD3,3)+S3*VX(N) 
RAUJY(JD3,3)=RAUJY(JD3,3)+S3*VY(N) 
JD4=JD3+1 
RAUJX(JD4,4)=RAUJX(JD4,4)+S4*VX(N) 
RAUJY(JD4,4)=RAUJY(JD4,4)+S4*VY(N) 

12 CONTINUE 
11 CONTINUE 

DO 3 I=O,NCEL 
RHO(I)=RAUX(I,1)+RAUX(I,2)+RAUX(I,3)+RAUX(I,4) 
RJX(I)=RAUJX(I,1)+RAUJX(I,2)+RAUJX(I,3)+RAUJX(I,4) 
RJY(I)=RAUJY(I,1)+RAUJY(I,2)+RAUJY(I,3)+RAUJY(I,4) 

3 CONTINUE 

The main advantage of this method is that it can yield to vectors which can be 
significantly larger than in the first method. 
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TABLE V 

VP200 Original method Modified method 

Charge and Current deposition 
Total time including sorting 

0.72 /is 0.77 ps 
2.86 /is 2.91 ps 

In this case, the overhead induced by vectorization is essentially related to the 
sorting of particles. The extra additions are much less important than in the 
preceding method. Using the previous notation, the additional storage required is 
approximatively given by 

MAX(2*NPART + NCEL, NPART + 2D x Fx NCEL). 

Here again, if the term 2D x F x NCEL is dominant in terms of storage, the extra 
storage required can be reduced at very little cost by recomputing the weights 
associated with each physical quantity. As previously, the two variations of this 
algorithm correspond to the “original method’ and the “modified method.” Let us 
emphasize that for an electromagnetic code, p and J, are usually not defined at the 
same position and the same time. This implies that it is necessary to sort the 
particles twice, which increases the overhead. 

On both computers, the sort takes about 1 fls per particle. The corresponding 
timings are shown Tables V and VI. 

(c) A New Approach 

Both preceding methods use extra storage to allow vectorization. This storage is 
usually available for 2D simulations, but it becomes a problem in 3D. The aim of 
the new approach that we have developed is to reduce the required auxiliary 
storage and to generate a more efficient algorithm by also reducing the number of 
auxiliary operations introduced by vectorization. 

The basic idea is that, for a 2D particle code using linear weights of interpolation, 
the four grid cells to which these weights are assigned are distinct. It is also true 
that the memory location of each physical quantity is distinct. We combine all these 
independent contributions into a single vector. This yields a vector of length 12 
associated with the three physical quantities p, J,, J,. Specifically for the particle 
K, ID(1, K) (I= 1,4) contain the addresses of the four cell numbers corresponding 
to the charge density p and SD(1, K) (I= 1,4) the corresponding weights. Similarly, 

TABLE VI 

CRAYZ Original method Modified method 

Charge and current deposition 
Total time including sorting 

0.99 ps 1.19 ps 
3.05 /Is 3.25 ps 
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ID(Z, K) and SD(Z, K) (I= 5, 8) contain the addresses and weights corresponding 
to .Z, while ID(Z, K) and SD(Z, K) (I= 9, 12) contain the same quantities for J,. The 
general length is 2D x F. It is fair to note that this idea has been presented 
simultaneously by J. L. Schwarzmeier et al. and us at the 12th Conference on the 
Numerical Simulation of Plasma in 1987. 

At this stage we have generated a short vector and it can be shown that the extra 
work induced by vectorization is: 

NPART auxiliary additions for an electrostatic code used to build the 
vector of indices, (2D x (F- 2) + 2) x NPART auxiliary additions for an 
electromagnetic code. 

In order to improve the efficiency of vectorization the vector length must be 
increased. This is done by combining our approach with the first method. This 
means that we handle NGROUP particles simultaneously. This yields a vector 
length equal to NGROUP x 2D x F. The advantage is that as we start with a vector 
length larger than one, the number of auxiliary arrays needed is reduced by a factor 
2O and the number of extra additions is reduced by 2D x F. As before, we shall now 
illustrate the practical implementation of the method by writing down the corre- 
sponding FORTRAN loop. Note however that the arrays involved must be declared 
in a single “COMMON” statement in order to guarantee the proper memory 
organization. As NGROUP is a small number of particles, we preserve the 
efficiency of the computation of the interpolation weights by using auxiliary arrays 
of length NVECT as in the reference code: 

C 
C DEFINITION OF CONSTANTS ,NGR AND NGJ 
C NGR,NGJ,POINTERS TO BEGINNING OF PARTICLE GROUP 
C 

NCF3=NCEL*3 
NVF12=NVECT*12 
NPF12=NGROUP*12 

L 

DO 10 IK=l,NVECT,NGROUP 
K=IK-1 
DO 11 IGROUP=l,NGROUP 
K=K+l 
NGR(K)=l+(IGROUP-l)*NCF3 
NGJ(K)=NGR(K)+NCEL 

11 CONTINUE 
10 CONTINUE 

C 
C NEW METHOD FOR ACCUMULATION OF CHARGE AND CURRENT DENSITIES 
C 

COMM0N/ARRAY/RHO(0:NDIM),RJX(O:NDIM),RJY(O:NDIM), 
TABAUX(NCF3,NGROUP-1) 

'DIMENSION ID(12,NVECT),SD(12,NVECT),IDlD(NVFl2),SDlD(NVF 
EQUIVALENCE (ID(1,1),ID1D(l)),(SD(l,l),SDlD(l)) 
DIMENSION TAB(NCF3,NGROUP),TABlD(NCF3*NGROUP) 
EQUIVALENCE (TAB(~,~),RH~(~)),(TAB(~,~),TAB~D(~)) 
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C 
C 
C 

C 
C 
C 

C 
C 
C 

C 
C 
C 

C 

DO 1 IN=l,NPART,NVECT 
N=IN-1 
DO 2 K=l,NVECT 
N=N+l 

INDICES FOR CHARGE DENSITY 

I=INT(X(N)) 
XINT=X(N)-FLOAT(I) 
J=INT(Y(N)) 
YINT=Y(N)-FLOAT(J) 
ID(l,K)=I+J*NDIMX+NGR(K) 
ID(2,K)=ID(l,K)+l 
ID(3,K)=ID(l,K)+NDIMX 
ID(4,K)=ID(3,K)+l 

WEIGHTS FOR CHARGE DENSITY 

SD(l,K)=(l.-XINT)*(l.-YINT) 
SD(4,K)=XINT*YINT 
SD(2,K)=XINT-SD(4,K) 
SD(3,K)=YINT-SD(4,K) 

INDICES FOR CURRENT DENSITY 

XAUX=X(N)-0.5*VX(N) 
I=INT(XAUX) 
XINT=XAUX-FLOAT(I) 
YAUX=Y(N)-0.5*VY(N) 
J=INT(YAUX) 
YINT=YAUX-FLOAT(J) 
ID(5,K)=I+J*NDIMX+NGJ(K) 
ID(6,K)=ID(5,K)+l 
ID(7,K)=ID(5,K)+NDIMX 
ID(E,K)=ID(7,K)+l 
ID(g,K)=ID(S,K)+NCEL 
ID(lO,K)=ID(6,K)+NCEL 
ID(ll,K)=ID(7,K)+NCEL 
ID(12,K)=ID(S,K)+NCEL 

WEIGHTS FOR CURRENT DENSITY 

Sl=(l.-XINT)*(l.-YINT) 
SI=XINT*YINT 
SZ=XINT-S4 
S3=YINT-S4 

SD(5,K)=Sl*VX(N) 
SD(6,K)=SZ*VX(N) 
SD(7,K)=S3*VX(N) 
SD(8,K)=S4*VX(N) 
SD(g,K)=Sl*VY(N) 
SD(lO,K)=S2*VY(N) 
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SD(ll,K)=S3*VY(N) 
SD(l2,K)=S4*VY(N) 

C 
2 CONTINUE 

C 
C ACCUMULATION OF CHARGE AND CURRENT DENSITIES 
C 

DO 3 K=l,NVF12,NPF12 
C 

CDIR$ IVDEP 
"VOCL LOOP,NOVREC 

DO 4 IK=K,K+NPF12-1 
TABlD(ID1D(IK))=TABlD(IDlD(IK))+SDlD(IK) 

4 CONTINUE 
3 CONTINUE 

L. 

1 CONTINUE 
C 

DO 5 IGROUP=2,NGROUP 
DO 5 I=l,NCEL 
TAB(I,l)=TAB(I,l)+TAB(I,IGROUP) 

5 CONTINUE 

The optimum organization of the vector of indices is computer dependent. On 
the Cray-2, it has been indicated in Section 2 that the memory was organized into 
four quadrants to which each CPU has access every four cycles. This means that 
the indices associated with the four weights of each physical quantities must point 
to different quadrant of the memory. According to the definition of ID(3, K) as a 
function of ID( 1, K) this implies NDIMX = 4N+ 2. A further constraint of 
optimization is that the total dimension of the arrays involve is such that 
NCEL = 4N. This ensures that the indices of the different components of the 
current density are in consecutive quadrants. If a particle has not changed cell in 
half a time step the indices of the charge density are also in consecutive quadrants. 

Because of the difference in memory structure, the previous organization is not 
optimum on the VP200 in single precision. The detailed timings of scatter/gather 
operations that we have provided at the beginning of this paper have shown that 
referencing two consecutive elements of memory in single precision yields bank 
conflicts that are catastrophic in terms of performance. A much better organization 
on the VP200 is: ID(l, K), ID(3, K), ID(5, K), ID(7, K), ID(9, K), ID(ll, K), 
ID(2, K), ID(4, K), . . . 

Because of the bank organization of the VP200 this scheme is optimal only if 
NDIMX = 4N + 2 and NCEL = 4N. 

It is left to the reader to discover better combinations. Timings of Table VII 
illustrate the previous consideration. In each case we have combined particles in 
group of 5 (NGROUP = 5). 

The influence of bank conflicts is clearly visible on the VP200. On the Cray-2, the 
use of the VP200 organization of the vector of indices only yields quadrant conflicts 
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VP200 
CRAYZ 

Cray organization VP organization 

2.18 /IS 1.22 /ls 
1.35 /Is 1.5 /ls 

every two indices and no bank conflicts, which explains why the decrease in perfor- 
mance is not very high. 

5. COMPARISON OF THE THREE METHODS 

In the preceding sections we have shown the influence of the different free 
parameters (number of particles in a group, memory organization) on the overall 
performance of each of the methods. In this section we shall compare their relative 
performances under the constraint that the auxiliary storage, used by each of them, 
is approximatively the same. Assuming 10 particles per cell, this yields 
NGROUP = 16 for the first method and NGROUP = 5 for the third method, when 
collecting p, J,, J, or NGROUP = 16 when collecting only p. The corresponding 
timings are shown in Table VIII. The number given in parentheses beside each 
timing is the vector length. This number is not indicated in the Horowitz method 
because it depends on the output of the sort and, as it is usually large, it is 
much less critical. The results referred to as “scalar deposition” correspond to 
the reference code, i.e., to the structure of the program before “full vectorization” 
of the particle pusher. Since the basis of the new method corresponds to the case 
NGROUP = 1, we have also included the corresponding timings under the 
reference NO X-STOR (no extra storage). 

Finally in Table IX we present timings obtained for the 3D case. We have 
assumed that the memory constraint was more severe than in 2D. In particular to 
limit extra storage we have assumed that in the Horowitz method particles are 

TABLE VIII 

CRAYZ VP200 

P AJ,,J, P P,J,,J, 

Scalar deposition 1.22 ps 3.03 jls 1 PS 2.12 j&s 
Horowitz 1.41 /Is 3.45 ps 1.35 ps 2.91 p 

Nishiguchi et al. 0.55 ps (16) 1.80 /LS (16) 0.42 /IS (16) 1.48 /is (16) 
Heron, Adam 0.52 /is (64) 1.35 p (60) 0.55 /LS (64) 1.22 ps (60) 
Heron, Adam 1.35 ps (4) 1.90 /Is (12) 2.14 /LS (4) 2.3 /IS (12) 

(NO X-STOR) 
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TABLE IX 

CRAYZ VP200 

P P, J,, J,., J, P P, Jx, Jy, Jz 

Scalar deposition 3.4 p 9.4 ps 1.56 /IS 6.48 /is 
Horowitz 2 P 5.95 p 1.36 ps 3.51 ps 

Nishiguchi et al. 1.4/S 5.7 ps 1.75 /Is 7.12 ps 
Heron, Adam 1 P (64) 2.6 ps (64) 0.89 ps (64) 2.12 p (64) 
Heron, Adam 1.6 PLS (8) 3.1 /JS (32) 2.2 ps (8) 2.65 ps (32) 

(NO X-STOR) 

sorted by blocks. For all the methods we have limited the auxiliary memory 
requirement to eight times NCEL (note that for NCEL = 1283 this is already in the 
range of 16 Mwords). This implies NGROUP= 8 for Nishiguchi’s method, 
NGROUP = 8 for the electrostatic case and NGROUP = 2 for the electromagnetic 
case in our method. 

The comparison of the three preceding methods of vectorization yields the 
following conclusions: For the Cray 2, 

(a) The new method that we have introduced is always more efficient. 
(b) The results obtained without extra storage show that, if the vector length 

is smaller than eight (2D electrostatic code), the vectorization is inefftcient and 
should not be implemented. This case which corresponds to a severe memory 
constraint seems rather unlikely on the Cray-2. 

(c) In 3D where memory constraint is likely to occur, good performance can 
be obtained without auxiliary storage and without any programming pain. 

For the VP200, 

(a) Without memory constraint the method by Nishiguchi et af. always the 
fastest (NGROUP x 64). 

(b) If one is more realistic in terms of memory constraint, then, our method 
is always better except for the 2D electrostatic case. 

(c) The timings without extra storage also show that vectorization should be 
avoided if the vector length is smaller than 12. 

Finally we feel that the two computers that we have compared provide some more 
general insight on the behavior of the algorithms for a larger class of computers. If 
the archictecture of a given computer is such that it handles efficiently short vectors, 
the conclusions for the Cray-2 hold, otherwise the conclusion for the VP200 are 
probably correct. 

It is also worthwhile to note that, on vector computers, the deposition step 
of a particle pusher is an expensive step. Depending on the model (electrostatic 
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or electromagnetic) and the number of dimensions, we have found that after 
optimization this step costs typically between 50 and 65% of the total particle 
pusher time. 

The computers used were the VP200 of CIRCE and the Cray-2 of CCVR. 
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